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Overview

* This presentation discusses the
development of a set of algorithms to do
event precursor analysis on intensity data
from a laser.

* The data is from a well-studied (NH_3)
laser system that has chaotic behavior.



Laser Data |

* The laser undergoes periods of buildup of
intensity followed by a sudden collapse in
intensity.

« Sometimes the collapse is significant, and
other times it is relatively small.

* |t is hard to predict what type of collapse
will occur (i.e., it is a chaotic process).



Laser Data ||

* |t is known that one can approximate the
dynamical behavior of the laser using
ideas from nonlinear dynamical systems.

« dx/dt = s(y-x)
dy/dt=rx -y - xz
dz/dt = xy - bz

* The values of s, r, and b determine the
nature of the chaotic attractor.
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0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Light Intensity of a Laser Cavity

100

200

300

400

500
Time

600

700

800

900

1000



Prognostic Problem

* Given a small set of data (1000 points)
develop an algorithm that can:
— Predict the future dynamics of this system.

— Generate a signal that represents the
confidence in the prediction.



Method

« We address this problem using the theory of
Gaussian Processes (which are related to
Kernel Methods), which assumes that any
subset of data for a vector X is Gaussian
distributed (from wikipedia).

Xo, o= (Xeyo o, X,

Using characteristic functions of random variables, we can
formulate the Gaussian property as follows:{X}, . ;is
Gaussian if and only if for every finite set of indices £,, ..., t,
there are positive reals g,; and reals J; such that
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The numbers o,; and y; can be shown to be the
covariances and means of the variables in the process.




Approach

» Using delay coordinate embedding (and
thus Takens’ Theorem) we build a
Gaussian Process Regression (GPR) to
predict:

POX(t+1)IX (1), X(t=1), ..., X(t-d)) = P(X(t+1)|X*(t))

* Once this distribution is known, we can
make predictions through iterating the
distribution.



One Step Ahead Predictions

GP

>P(X(t+1)[X*(1))




lterated Predictions

GP >P(X(t+1)IX*(1)
X*(t) > >P(X(t+1)[X*(1))

i.e., we feed the output of the model into its input to make a prediction of
P(X(t+2) | [P(X(t+1), X(t), X(t-1), ... X(t-d+1])



100-step ahead forecasts

* We iterate the Gaussian Process 100
times to generate this time series.

* Forecasting metric: normalized mean
squared error.

— Trial A: 0.30
— Trial B: 0.16



GP Trial A: NMSE = 0.30
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Trial B: NMSE =0.16
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Linear Model: NMSE = 0.83
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Bagged Neural Networks: NMSE = 0.37

Training Time Series
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Note: although this model has a reasonable performance in this example,
we found that it had significant run-to-run variability in performance.



Comparison
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Statistical Comparison of GP’s and Neural Networks
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Results

* We have shown that we can make iterated
forecasts and detect a precursor to the

sudden drop in intensity using kernel
methods.

* We can generate a meaningful measure of
prediction certainty.

* This quantity seems to indicate substantial
Increases in uncertainty near the collapse.



Further Work

Variability due to model uncertainty

Significant testing with respect to forecast
variability and quality of precursor
detection.

Analysis of forecast horizon.

Test methods for use on Liquid Propulsion
systems and ISS-CMG data sets.
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